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Abstract 

This paper mainly consists in counting the crystal 
families of five-dimensional space and then in giving 
a geometrical name to each of them. All crystal cells 
of E 5 are obtained as orthogonal products of cells 
belonging to spaces of dimension less than five. 
Thanks to this geometrical approach, many general 
results can easily be found as WPV symbols of the 
holohedries (Weigel, Phan, Veysseyre symbols), the 
quadratic form associated with each lattice, the sub- 
groups of these holohedries. The number of crystal 
families counted here is obviously the same as the 
number given by Plesken [Match (1981), No. 10, 
pp. 97-119] by a quite different method. 

I. Introduction 

To study the crystal families of five-dimensional 
space, various methods are possible. 

One of these consists in writing all quadratic forms 
of the space E 5 systematically and in finding the point 
symmetry group (PSG) which leaves each of these 
quadratic forms invariant. Plesken (1981) proposed 
this method. 

Another one consists in splitting the space E 5 into 
two orthogonal supplementary spaces such as E20) 
E 3 o r  E ~ E  4 (Phan, 1989) or, more exactly, into 
two, three, four or five orthogonal subspaces. Then, 
a cell of E 5 will be considered as the orthogonal 
product of a cell of E 2 and of E 3, o r  as a right 
hyperprism based on a polytope of E 4. 

This systematic approach, based on the geometry, 
seems to be well adapted to the study of th¢ crystal 
lattices of E 5 and has enabled us to know their exact 
number and their most important properties. The 
names of the crystal families are easily accessible as 
wpll as the WPV symbols (Weigel, Phan, Veysseyre 
symbols) (Weigel, Phan & Veysseyre, 1987) of the 
holohedries of these families; from these it is possible 
to find some subgroups. Then, the quadratic form 
associated with each lattice can be quickly written. 

We intend to illustrate this approach through an 
example. Let us consider the triclinic family of the 

0108-7673/91 / 030233-06503.00 

space E 3 and the square family of the space E 2. The 
orthogonal product of the two cells, triclinic and 
square, gives a polytope which is the cell of a lattice 
of Es; the crystal family so defined is called 

orthogonal triclinic ( X Y Z )  square (TU) 

if the basic five-dimensional lattice has ( X Y Z T U )  as 
basic cell vectors. With respect to this basis, the matrix 
of the quadratic form associated with the lattice is 
matrix no. 1. 

a d e i 0 0 
I 

d b f ~  O 0  
I 

e f c  i O 0  
L . . . . . . .  

0 0 0 I g 0 
I 

0 0 0 M 0 g 

Matrix no. 1. Associated with the family orthogonal triclinic 
(XYZ) square (TU), a = Ilxll 2, b =  IIYII 2, c - - I lZ l l  2, g= 
Ilrl12-- IIUII =, d =  X. Y, e= X.Z, f =  Y.Z. The dot means 
scalar product. 

The WPV symbol of the holohedry of this crystal 
family is obviously 

LI_4, m, m, 

where 1 is the Hermann-Mauguin  symbol of the 
holohedry of the triclinic family in E 3 and 4ram the 
symbol of the square family in E 2. Consequently, the 
order of this PSG equals 

2 × 8 = 1 6 .  

For writing the name of a crystal family of E 5, we 
shall adopt a precise rule: 

The first written polytope is the least symmetrical, 
i.e. the order of its PSG is the smallest. 

Before studying all the crystal families of the space 
E 5, we shall recall some properties of crystal cells of 
spaces E l, E 2, E 3 and of their orthogonal products. 

II. Decompositions of the space E 5 

All possible decompositions of the space E 5 into 
orthogonal supplementary subspaces are the 
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following ones: 

E I ~  EIO) E I ~  EIO) E'  

E I ~  E1t~ EIO) E2 

Elt~ ElO) E 3 

E l G  E "* 

E 2 ~ E  3 

and obviously E 5. 
First, we consider the direct sum: E I ~ E  ~ and the 

orthogonal product of two segments of each space. 
The crystal cell so obtained in the space E 2 is the 
rectangle or orthotope (Coxeter, 1973). Its well 
known Hermann-Mauguin  symbol is 2mm but the 
best one should be m_l_m. Indeed, if we choose an 
orthogonal basis (xy), the two reflections m,, and my 
generate the PSG of the rectangular cell which has 
elements 

mx, my, 2xy , 1. 

In the same way, to the direct sum E ~  E~0)E l -- 
E 3 corresponds the orthorhombic cell of the space 
E 3, or orthotope. With respect to an orthogonal basis 
(xyz), the matrix of the quadratic form associated 
with this cell is matrix no. 2. 

Matrix no. 2. Associated with the orthorhombic lattice, 
a = IlXll 2, b = II YII 2, c = IlZll 2 

The Hermann-Mauguin  symbol of this cell is 
2 /m 2 /m 2 /m or 2 /mmm for short. 

As previously, the WPV symbol m ± m ± m  is better. 
The PSOs of this PSG are the three reflections 
mx, my, mz and all their products: 2xy, 2xz, 2yz, lxyz, 1. 

The generalization is obvious and the WPV symbol 
of the orthotope of the space E" is 

m±m3-m3-...3-m 

n symbols m. 

This recalls the construction of the orthotope cell: 
n vectors mutually perpendicular. 

As a matter of fact, the system 6 of the crystal 
family V of the space E 4 called di orthogonal rec- 
tangles in a previous paper (Weigel et al., 1987) must 
be called 

orthotope of E 4 

so that the WPV symbol of the holohedry is 

m3-m3-m±m. 

We shall use it in future instead of 

m, m, 23332, m, m. 

Table 1. The three irreducible crystal cells of  E 2 

H e r m a n n - M a u g u i n  
Name  of  the symbol  o f  
crystal cell the ho iohedry  Order  o f  the PSG 

Parallelogram 2 2 
Square 4mm 8 
Hexagon 6ram 12 

Table 2. The two irreducible crystal cells of  E 3 

H e r m a n n - M a u g u i n  
Name  of  the symbol  o f  
crystal cell the ho lohedry  Order  o f  the PSG 

Triclinic T 2 
Cube 4/m 3 2/m 48 

Table 3. The 11 irreducible geometrical cells of  E 4 

Names  o f  the WPV symbol o f  Order  o f  
crystal cell the ho lohedry  the PSG 

Hexaclinic 14 2 
Di diclinic squares 44* 4 
Di diclinic hexagons 66* 6 
Di monoclinic squares 44*, 2 8 
Di monoclinic hexagons 2, 66", 2 12 
Di monoclinic isosquares 88 ^ 2 16 
Di monoclinic isohexagons 1212 ̂  2 24 
Decagonal 1010 ̂  2 20 
Di orthogonal isohexagons (m, m, 6.1_6, m, m)1212 288 
lcosahedral* (4, 3, m)i010 240 
Hypercube (4/m 3 2m)88 384 

* Particular rhombotope cos a = -1 /4 .  

Indeed, this PSG has four rotations 2 and the 
symbol m, m, 23332, m, m seems to devote a peculiar 
role to two of them, which is not the case. 

Now, we consider all irreducible crystal cells of 
the space E 2 (irreducible from a geometrical point 
of view). They are listed in Table 1. 

A family is said to be irreducible if the n translation 
operators x, y, z, t, u , . . .  corresponding to a basis of 
the n-dimensional space E" belong to the same 
irreducible representation (IR) of the holohedry of 
this family. In the opposite case, the family is said 
to be reducible (Weigel & Ve~csseyre, 1990). For in- 
stance, the square family of E is irreducible because 
(x ,y)  belong to the two-dimensional IR E of the 
character table of 4mm (C4~) which is the holohedry 
of this family. The tetragonal family of E 3 is reducible 
because (x, y) belong to the two-dimensional IR E.. 
of 4/mmm (D4h) and z to the one-dimensional IR 
A2, • 

Then, we consider the two irreducible crystal cells 
of the space E3; they are listed in Table 2. 

Lastly, we consider the crystal cells of the space 
E 4 which are not products of polygons or polyhedra 
of the spaces E 2 o r  E 3, namely the irreducible crystal 
cells of E4; there are 11 among the 23 cells of the 
crystal families of E 4 which are listed in Table 3. 
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III. Names of  the crystal families of the space E s 

(1) E 5 = E i ~ E I ~ E i ~ E I ~ E  1 
Only one cell corresponds to this decomposition. 

It is the orthotope. It is defined by five parameters 
of length; the WPV symbol of its PSG is 

m_l_m_l_m±m_l_m 

as we have already explained and its order is 25 = 32. 

(2) E5= E1t~EIO)EIO)E2 
We obtain three different cells and, therefore, three 

crystal families called respectively 
orthogonal parallelogram orthorhombic 
orthogonal orthorhombic square 
orthogonal orthorhombic hexagon. 

We respected the rule previously given, i.e. the first 
name is for the least-symmetrical polytope and we 
also kept the well known term of orthorhombic 
instead of orthotope. 

(3) E 5= EI~EI~E3 
We obtain two crystal families only which are 

ortho~onal triclinic rectangle (holohedry l_l_2mm 
or l_Lm±m) 

orthogonal rectangle cube (holohedry 
2 m m ± 4 / m  3 2 /m or m ± m ± 4 / m  3 2/m).  

(4) E 5= E I ~ E 2 0 ) E 2  
All corresponding crystal cells are fight hyperprism 

based on the rectangular product of two polygons 
listed in Table 1. So we find six crystal families which 
are 

right hyperprism based on di orthogonal 
parallelograms 

right hyperprism based on di orthogonal squares 
right hyperprism based on di orthogonal 

hexagons 
fight hyperprism based on orthogonal 

parallelogram square 
right hyperprism based on orthogonal 

parallelogram hexagon 
right hyperprism based on orthogonal square 

hexagon. 

(5) E 5 = Elff) E 4 

This decomposition leads to 11 right hyperprisms 
based on the polytopes of E 4 given in Table 3. Let 
us mention some of them: 

right hyperprism based on hexaclinic 
right hyperprism based on di monoclinic iso- 

squares 
and so on. 

All these crystal families are listed in the general 
Table 4. 

(6) E 5 = E 2 ~  E 3 

Six crystal families correspond to the orthogonal 
product of one of the three cells of Fable 1 and one 
of the two cells of Table 2. 

orthogonal triclinic parallelogram 

orthogonal triclinic square 
orthogonal triclinic hexagon 
orthogonal parallelogram cube 
orthogonal square cube 
orthogonal hexagon cube. 

(7) The three types of geometrically irreducible cells 
(i) Decaclinic cell. It depends on 15 parameters: 

five parameters of length and ten parameters of angle; 
hence the name of the corresponding crystal family. 

The WPV symbol of the holohedry is | (Weigel, 
Veysseyre & Phan, 1990~_. Indeed, its two elements 
are 1 (identity) and 15 = 1 or inversion. 

(ii) Hypercubic cell. It depends on one parameter 
of length only. The hypercubic lattice is generated by 
five mutually orthogonal vectors of the same length. 
The matrix of the associated quadratic form is the 
diagonal matrix no. 3, with respect to the basis lattice. 

o0 0 0 000a / 0 a 0 0 0 
0 0 a 0 

0 0 0 a 

0 0 0 0 

Matrix no. 3. Associated with the hypercubic lattice, a = 
Ilxll 2=  II YII 2=  Ilzll 2=  II TII 2 = II UII 2. 

It is a peculiar case of the orthotope cell. In a 
previous paper (Veysseyre, Weigel, Phan & Effantin, 
1984), we described the hypercube of the space E 4. 
In a similar way, we can describe the hypercube of 
the space E 5 and all its elements of symmetry. It has 
25= 32 vertices for instance and it is bounded by 
5 x 2 = hypercubes which belong to the five subspaces 
of dimension 4 defined by four vectors chosen among 
the five vectors of the lattice. 

The Hermann-Mauguin symbol of the PSG of the 
cube is 4 /m 3 2/m. 

The WPV symbol of the PSG of the hypercube of 
E 4 (Weigel et al., 1987) is 

(4/m 3 2/m)88, 

where 88 is the symbol of a cyclic group generated 
by the double rotation 8183. Then, the WPV symbol 
of the hypercube of E 5 is 

[(4/m 3 2/m)8815--5, 

where 55 is the symbol of a cyclic group generated 
by the double rotation-inversion 55 (Weigel & 
Veysseyre, 1990; Weigel, Veysseyre & Phan, 1990). 

The order of the PSG of the hypercube of E 5 is 
equal to 255l = 3840 (Veysseyre, 1987). 

Its elements, determined by computer, are listed in 
Table 5. There are 1920 PSO+s, i.e. 1920 rotations or 
double rotations and 1920 PSO-s or improper rota- 
tions (inversion-rotations or reflection-rotations). The 
notations used here are explained in a previous paper 
(Weigel, Veysseyre & Phan, 1990). 
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Table 4. Names of the crystal families of the space E 5 
The  first c o l u m n  gives the n u m b e r  o f  the  fami ly  in the Plesken c lass i f icat ion;  the  s e c o n d  c o l u m n  gives the  n u m b e r  o f  length  p a r a m e t e r s  
a n d  the th i rd  the n u m b e r  o f  ang le  pa ramete r s .  Fo r  each  family ,  the  fou r th  c o l u m n  gives its geomet r i ca l  n a m e ,  the  fifth gives the  W P V  
s y m b o l  o f  the  c o r r e s p o n d i n g  h o l o h e d r y  and  the  o r d e r  o f  this P S G  is i nd i ca t ed  in the  last co lumn .  

Family Parameters 
I 5 10 

II 5 6 
III 5 4 
IV 5 3 
V 5 2 

VI 4 3 
VII 4 3 

VIII 5 1 

IX 5 0 
X 4 1 

XI 4 1 
XII 3 2 

XIII  3 2 

XIV 4 0 

XV 4 0 

XVI 3 1 
XVII 3 i 

XVIII 3 1 

XIX 3 0 
XX 3 0 

XXI 3 0 

XXII 3 0 

XXIII  2 1 
XXIV 2 l 
XXV 2 1 

XXVI 2 0 

XXVI! 2 0 

XXVIII 2 0 

XXIX 2 0 
XXX 2 0 

XXXI 1 0 

XXXII  1 0 

N a m e  

Decaclinic 
Right hyperprism based on hexaclinic (YZTU) 
Orthogonal triclinic (XYZ) parallelogram (TU) 
Orthogonal triclinic (XYZ) rectangle (TU) 
Right hyperprism based on di orthogonal parallelograms (YZ)(TU)  
Orthogonal triclinic (XYZ) square (TU) 
Orthogonai triclinic (XYZ) hexagon (TU) 

Orthogonal parallelogram (XY)  orthorhombic (ZTU) 

Orthotope 
Right hyperprism based on orthogonal parallelogram (YZ) square (TU) 
Right hyperprism based on orthogonal parallelogram (YZ) hexagon (TU) 
Right hyperprism based on di diclinic squares (YZ)(TU)  
Right hyperprism based on di diclinic hexagons (YZ)(TU)  

Orthogonai orthorhombic (XYZ) square (TU) 

Orthogonal orthorhombic (XYZ) hexagon (TU) 

Right byperprism based on di monoclinic squares (YZ)(TU)  
Right hyperprism based on di monoclinic hexagons (YZ)(TU)  

Orthogonal parallelogram (XY)  cube (ZTU) 

Right hyperprism based on di orthogonal squares (YZ)(TU)  
Right hyperpdsm based on orthogonai square (YZ) hexagon (TU) 
Right hyperprism based on di orthogonal hexagons (YZ)(TU) 

Orthogonal rectangle (XY)  cube (ZTU) 

Right hyperprism based on di monoclinic ±so squares (YZ)(TU) 
Right hyperprism based on di monoclinic ±so hexagons (YZ)(TU)  
Right hyperprism based on 'decagonal '  (YZTU)* 

Orthogonal square (XY)  cube (ZTU) 

Orthogonal hexagon (XY)  cube (ZTU) 

Right hyperprism based on hypercube (YZTU) 

Right hyperprism based on di orthogonal iso hexagons (YZ)(TU)  
Right hyperprism based on icosahedral (YZTU) 

Hypercube 

Particular rhombotope cos a = - 1 / 5  

W P V  s y m b o l  O r d e r  o f  
o f  the  h o l o h e d r y  the  P S G  

2 
m.l.] 4 2 x 2 = 4  
112 2x2=4 

7±2, m, m 2 x 4 = 8  
m i 2 1 2  2 x 2 x 2 = 8  

7±4, m, m 2 x 8 =  16 
716, m, m 2x 12=24 

2 2 2  
21 , , 2 x 8 = 1 6  

m . m  m 
m l m l m l m l m  25 =32 

m1214,  m, m 2 x 2 x 8 = 3 2  
m12±6,  m, m 2 x 2 x  12=48 

m±44" 2 x 4 = 8  
m±66" 2 x 6 =  12 

2 2 2 
, , ±4, m,m 8 × 8 = 6 4  

m m m 
2 2 2 

, , - -±6 ,  m, m 8x 12=96 
m m m 

m±44", 2 2 x 8 = 16 
m±2, 66*, 2 2 x 12 = 24 

4 _ 2 
21--, 3, -- 2 x 48 = 96 

171 m 

mira, m, 414, m, m 2 x 8 x 8  = 128 
mlm,  m, 4±6, m, m 2 x 8 x  12= 192 
mlm,  m, 6±6, m, m 2x 12x 12= 288 

4 _ 2 
m,  m,  2 1 - - ,  3 ,  - -  4 x 4 8  = 192 

m m 
re .L(88  ^ 2)  2 x 16 = 32 

m1(1212^ 2) 2x 24=48 
m±(lOlO^ 2) 2x 20=40  

4 _ 2 
m, m, 4±-- ,  3, - -  8 x 48 = 384 

m m 
4 _ 2 

m, m, 6±- - ,  3 , - -  12x48 = 576 
m m 

4 2 
m l ( m ,  3, m ) 8 8  2 x 3 8 4 = 7 6 8  

m.l.[(th, m, 6.1.6, m, m)1212] 2 x 288 = 576 
m ±(3,, 3, m)1010 2 x 240 = 480 

[(4, 3, m)1010136 6! x 2 = 1440 

* Or fight hyperprism based on the particular rhombotope cos a = -1 /4 .  

(iii) The particular rhombotope cos a = - 1/5. Some 
properties of this polytope were given by Veysseyre 
(1987). 

A rhombus is a parallelogram in which all edges 
are equal. A rhombohedron is a parallelepiped in 
which all faces are equal rhombuses; and in the space 
E" a rhombotope is a peculiar parallelotope in which 
all faces are equal rhombuses. In the space E 5, let us 
consider the lattice defined by five vectors ei ( i =  
1, 2, 3, 4, 5) of the same length and such that 

cos (e,, %) = - 1 / 5 V i  Vj ~ i. 

The parallelotope built on these vectors is a rhom- 
botope, all its faces being equal rhombuses. In addi- 
tion, as the cosine of the obtuse angle has value - 1 / 5 ,  
it is possible to inscribe in it a regular simplex 

or hexatope (Phan, Veysseyre & Weigel, 1988; 
Veysseyre, 1987). The matrix of the quadratic form 
associated with this lattice is matrix no. 4 with respect 
to the basis vectors ei. 

t a -a/5 -a/5 -a/5 t 
-a/5 

-a/5 a -a/5 -a/5 -a/5 
-a/5 -a/5 a -a/5 -a/5 
-a/5 -a/5 -a/5 a -a/5,  

a~ -a/5 -a/5 -a/5 -a/5 
Matrix no. 4. Associated with the particular rhombotope 
cos o~=-I/5 a=lle, ll 2, -a/5=e, .ej. 

We recall that a simplex is the generalization of a 
triangle. Any set of n + 1 points which do not lie in 
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Table 5. The 3840 PSOs of  the hypercube o f  E 5 

The PSO-s in the second column are the commutative products 
of the PSO+s of the first column and of the total homothetic of 
ratio (-1): is = 1. For instance, -- 

3x 15= m26 
5t53× 15 = m 10-310 l, which is the generator of the cyclic group 

55 (Weigel, Veysseyre & Phan, 1990). 
The multiplication by i s does not change the number of PSOs. So 
the number of PSO+s equals the number of PSO-s and this number 
is given in the third column. 

Type of PSO÷s Type of PSO-s  Number 
I ]5 1 
2 [3 130 
3 m26 80 
4 m24 20 

i 4 m 25 
23 m6 80 
24 m4 420 
26 m3 320 
43 m46 160 
44 m44 60 

5153 m10-3101 384 
8t83 m858 - t 240 

an ( n -  1)-dimensional space are the vertices of an 
n-dimensional simplex (Coxeter, 1973). A regular 
simplex has all its edges equal, all its faces equal and 
so on. An equilateral triangle is bounded by three 
segments, a regular tetrahedron by four equilateral 
triangles, a regular pentatope by five regular 
tetrahedra, a regular hexatope by six regular pen- 
tatopes. Thanks to these geometrical remarks, we can 
write the WPV symbol of the holohedry of the crystal 
family defined by this particular rhombotope. The 
order of the PSG of the simplex is (n + 1) ! 

Indeed, the Hermann-Mauguin  symbols of the 
PSG of the simplexes are the following ones: 

m for the segment (in the space E ~) 
3m for the equilateral triangle (in the space E 2) 
~,3m for the regular tetrahedron (in the space E3). 
The WPV symbol of the regular pentatope is 

(~,, 3, m)55 

and the symbol of the regular hexatope is 

[(~,, 3, m)5513--6, 

where 3--6 is the__e_symbol of the cyclic group generated 
by the PSO 3---6=63i5 (Weigel, Veysseyre & Phan, 
1990). Then, we deduce the WPV symbol of this 
crystal family: 

[(~,, 3, m) 101013---6. 

The cell of the lattice includes two centrosymmetric 
regular simplexes and the order of its PSG is 

6! x 2 = 1440 

(6! being the order of the regular simplex built in the 
space E 5) andmthis property explains the symbol 
[(4, 3, m)101013--6. 

IV. Subgroups of  some crystal families 

Let us consider one example: the crystal family IV 
of Table 4: 

orthogonal triclinic ( X Y Z )  rectangle (TU),  
where ( X Y Z T U )  is the lattice basis. 

The WPV symbol of the holohedry is 

i_1_2, m, m. 

i is a subgroup (generator lxyz); 2, m, m is another 
subgroup generated by the PSOs m, and m,,. It has 
two subgroups: 2 (generator 2,,) and rn (generator 
m, for instance). 
The products of two (or more) PSOs generate other 
subgroups: 

1± rn (generators i,,yz and m,) of order 4 
i 4 (generator_l xyz m, = ixvz , )  of order 2 

(generator 1 ~,yzm~_rn,, = 1,,y~,,,) of order 2 
14±m (generators lxyz, and m,) of order 4 
i±2  (generators lx~,z and 2,,) of order 4 
2, i4, i4 (generators T~,.~, and 2,,) of order 4. 
Therefore, this holohedry has ten proper sub- 

groups; seven of them have been encountered pre- 
viously: 

1 in the family_ I whose holohedry is i; 
m, T4 and m±14 in the family II whose holohedry 

is roll4; 
i ,  2 and 1±2 in the family III whose holohedry is 

i±2. 
Thus, there remain three subgroups, i.e. three crys- 
tallographic GPSs which are 2, m,m ; l±rn ;  2, 14, 14 
and finally the holohedry l±2mrn  for the crystal 
family IV orthogonal triclinic rectangle. 

The WPV symbols that we chose for all the holo- 
hedries enables us to determine all the subgroups, i.e. 
the crystallographic PSGs, in a very easy manner. But 
when the order of this PSG becomes higher, a com- 
puter is required. 

Concluding remarks 

All the crystal families of the space E 5 have been 
counted through an original method. The names of 
these families are connected to the geometry as well 
as to the WPV symbols of their holohedries. They are 
listed in the general Table 4. For this enumeration, 
we have adopted the order and the numbers given by 
Plesken (1981). The crystal families are classified 
according to the number of parameters necessary for 
describing each of them. 
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Abstract 

The frequency distribution of electron-density-func- 
tion values encountered in a protein crystal has a 
characteristic shape and may be predicted for a pro- 
tein with unknown spatial structure. It is shown that 
various methods of refinement of structure-factor 
phases (frequency-restrained refinement, histogram 
matching, density modification) may be regarded as 
various approaches to the same problem of obtaining 
the electron-density distribution which agrees with 
the X-ray experimental data and has a prescribed 
histogram. Test computations illustrate the relative 
efficiency of the methods analyzed. 

0. Introduction 

The method of isomorphous replacement, which is 
used to solve the phase problem in protein crystal- 
lography, fails sometimes to give the desired quality 
of electron-density-distribution maps. Additional 
ways of improving maps are needed. One of them is 
using, or rather trying to use, the knowledge of the 
mathematical properties of the electron-density- 
distribution function, in addition to the data from 
X-ray experiments. In previous papers (Lunin, 1986, 
1988; Lunin, Urzhumtsev & Skovoroda, 1990; Lunin 
& Skovoroda, 1991), we showed that a valuable source 
of information on a protein can be a histogram corre- 
sponding to a finite-resolution image of its distribu- 
tion function. Analogous approaches were suggested 
by Luzzati, Mariani & Delacroix (1988), Harrison 
(1988) and Zhang & Main (1990). 

Let us recall the main point. Let p(r) be a function 
defined for points r of a unit cell V and 

F(s) exp [iq~(s)] = ~ p(r) exp[2zri(s,r)]dV, 
V 

be its structure factors. 
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By the image of p(r) at a resolution d we mean 
the function 

pa(r)=(1/ lvI)  E F(s)exp[i~o(s)] 
Isl<i/a 

x exp [-21ri(s, r)]. (1) 

We define the cumulative function for the image Pd (r), 

N(t)  = (1/I Vl) mes {r: pd(r) < t}, 

and its density, 

d 1 d v(t)=~t N(t)=Iv~ I d t m e s  {r: pal(r)----- t}. (2) 

Here I VI is the total volume of the unit cell and 
mes{r: A} is the volume of the part of the cell 
occupied by points r satisfying condition A. The value 
v(t)At is the probability that the value pa(r) will 
belong to the interval (t, t + At) for a random choice 
of point r in the cell. It was shown earlier (Podjarny 
& Yonath, 1977; Lunin, 1986; Zhang & Main, 1990) 
that, if p(r) is the function of electron-density distri- 
bution in a protein, the graph of the function v(t) 
has a characteristic shape. An approach to calculating 
the function v(t) for proteins with unknown space 
structure has been suggested (Lunin & Skovoroda, 
1991). [As before, it is called here the histogram of 
the image pa(r).] We denote this a priori defined 
histogram as va(t) and refer to it as a 'standard' (for 
a given object and a given resolution). 

In practice, the values of phases ~p(s) and of moduli 
F(s) used to calculate the image (1) often contain 
errors. Moreover, part of the phases, and of moduli 
as well, may be dropped out of calculation. It results 
in a distorted image pd(r). 

In this paper we shall show how the a priori knowl- 
edge of the histogram va(t) [or, which is equivalent, 
of the cumulative function Na(t ) ]  can be used for a 
more exact determination of the phases and moduli 
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